Nanomaterials (Mar 2023)
Fe-Ce/Layered Double Hydroxide Heterostructures and Their Derived Oxides: Electrochemical Characterization and Light-Driven Catalysis for the Degradation of Phenol from Water
Abstract
Fe-Ce/layered double hydroxides (LDHs) were synthesized via a facile route by exploiting the “structural memory” of the LDH when the calcined MgAlLDH and ZnAlLDH were reconstructed in the aqueous solutions of FeSO4/Ce(SO4)2. XRD analysis shows the formation of heterostructured catalysts that entangle the structural characteristics of the LDHs with those of Fe2O3 and CeO2. Furthermore, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, TG/DTG, SEM/EDX and TEM results reveal a complex morphology defined by the large nano/microplates of the reconstructed LDHs that are tightly covered with nanoparticles of Fe2O3 and CeO2. Calcination at 850 °C promoted the formation of highly crystallized mixed oxides of Fe2O3/CeO2/ZnO and spinels. The photo-electrochemical behavior of Fe-Ce/LDHs and their derived oxides was studied in a three-electrode photo-electrochemical cell, using linear sweep voltammetry (LSV), Mott–Schottky (M-S) analysis and photo-electrochemical impedance spectroscopy (PEIS) measurements, in dark or under illumination. When tested as novel catalysts for the degradation of phenol from aqueous solutions, the light-driven catalytic heterojunctions of Fe-Ce/LDH and their derived oxides reveal their capabilities to efficiently remove phenol from water, under both UV and solar irradiation.
Keywords