Shiyou shiyan dizhi (Nov 2023)

Method for identification of fractures in shale gas horizontal wells in eastern Sichuan Basin and its application

  • Yongmin PENG,
  • Shixiong DONG,
  • Ruikang BIAN,
  • Wei DU,
  • Hui QIAO,
  • Zengqin LIU

DOI
https://doi.org/10.11781/sysydz2023061196
Journal volume & issue
Vol. 45, no. 6
pp. 1196 – 1203

Abstract

Read online

The relationship between fractures and gas logging in Nanchuan-Wulong area in eastern Sichuan Basin is utilized to study the identification of fractures in shale gas horizontal wells based on geological (core), imaging logging, logging evaluation, seismic prediction, and other data. First, to solve the problems of lack of core and imaging logging and difficulty in identifying natural fractures in shale gas horizontal wells, a core scale shale natural-fracture identification model is established through vertical wells from a geological perspective in this paper, and the development of high angle fractures in the core is consistent with the high values and peaks of total hydrocarbon anomalies. Second, in combination with the fracture identification mode, the fracture development section of non-coring vertical wells can be quickly and qualitatively identified at a low cost based on total hydrocarbon information. There will be a sudden increase in the total hydrocarbon value in the fracture development section, especially in the shale section with low total organic carbon (TOC). The sudden increase in the total hydrocarbon value also represents the existence of fractures. Finally, the plate method of TOC and normalized total hydrocarbon correlation is used to quantitatively identify vertical and horizontal well fracture sections without coring and imaging logging data. The area delineated by a normalized total hydrocarbon value ≥0.4 and TOC ≥0.5% are considered as the fracture development section of a horizontal well. Based on the identified horizontal well fracture section, from the perspective of geological engineering integration, it is possible to avoid or pay attention to these densely developed large or giant fractures in advance, thereby increasing the production of a single well.

Keywords