International Journal of Ceramic Engineering & Science (Sep 2020)

Fracture behavior of metakaolin‐based geopolymer reinforced with carbon nanofibers

  • Ange‐Therese Akono

DOI
https://doi.org/10.1002/ces2.10060
Journal volume & issue
Vol. 2, no. 5
pp. 234 – 242

Abstract

Read online

Abstract We investigate the fracture response of metakaolin‐based geopolymer reinforced with 0.1 wt%, 0.2 wt%, and 0.5 wt% carbon nanofibers. We measure the elastoplastic response using microindentation tests. We note an increase in indentation modulus of 5%, 13%, and 21%, and an increase in indentation hardness of 9%, 18%, and 25%, respectively. We measure the fracture energy using cutting‐edge microscopic fracture tests. In our tests, a sphero‐conical diamond indenter pushes across the specimen's surface under a prescribed vertical force. We analyze the recorded penetration depth and horizontal force using nonlinear fracture mechanics and extract the fracture parameters. We find that carbon nanofibers enhance fracture resistance. The fracture toughness increases by, respectively, 38%, 40%, and 45%; meanwhile, the fracture energy increases by, respectively, 83%, 72%, and 74%. We find that carbon nanofibers lead to a densification of the microstructure. Moreover, we observe crack‐bridging mechanisms in geopolymer nanocomposites. This study is important to pave the way for novel enhanced‐performance and multifunctional structural materials.

Keywords