Frontiers in Systems Neuroscience (Sep 2020)
SeSBAT: Single Subject Brain Analysis Toolbox. Application to Huntington’s Disease as a Preliminary Study
Abstract
Magnetic resonance imaging (MRI) biomarkers require complex processing routines that are time-consuming and labor-intensive for clinical users. The Single Subject Brain Analysis Toolbox (SeSBAT) is a fully automated MATLAB toolbox with a graphical user interface (GUI) that offers standardized and optimized protocols for the pre-processing and analysis of anatomical MRI data at the single-subject level. In this study, the two-fold strategy provided by SeSBAT is illustrated through its application on a cohort of 42 patients with Huntington’s disease (HD), in pre-manifest and early manifest stages, as a suitable model of neurodegenerative processes. On the one hand, hypothesis-driven analysis can be used to extract biomarkers of neurodegeneration in specific brain regions of interest (ROI-based analysis). On the other hand, an exploratory voxel-based morphometry (VBM) approach can detect volume changes due to neurodegeneration throughout the whole brain (whole-brain analysis). That illustration reveals the potential of SeSBAT in providing potential prognostic biomarkers in neurodegenerative processes in clinics, which could be critical to overcoming the limitations of current qualitative evaluation strategies, and thus improve the diagnosis and monitoring of neurodegenerative disorders. Furthermore, the importance of the availability of tools for characterization at the single-subject level has been emphasized, as there is high interindividual variability in the pattern of neurodegeneration. Thus, tools like SeSBAT could pave the way towards more effective and personalized medicine.
Keywords