Particle and Fibre Toxicology (Sep 2024)

Microplastics caused embryonic growth retardation and placental dysfunction in pregnant mice by activating GRP78/IRE1α/JNK axis induced apoptosis and endoplasmic reticulum stress

  • Jun Bai,
  • Yuzeng Wang,
  • Siwei Deng,
  • Ying Yang,
  • Sheng Chen,
  • Zhenlong Wu

DOI
https://doi.org/10.1186/s12989-024-00595-5
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Microplastics (MPs), a brand-new class of worldwide environmental pollutant, have received a lot of attention. MPs are consumed by both humans and animals through water, food chain and other ways, which may cause potential health risks. However, the effects of MPs on embryonic development, especially placental function, and its related mechanisms still need to be further studied. We investigated the impact on fetal development and placental physiological function of pregnant mice by consecutive gavages of MPs at 0, 25, 50, 100 mg/kg body weight during gestational days (GDs 0–14). The results showed that continuous exposure to high concentrations of MP significantly reduced daily weight gain and impaired reproductive performance of pregnant mice. In addition, MPs could significantly induce oxidative stress and placental dysfunction in pregnant mice. On the other hand, MPs exposure significantly decreased placental barrier function and induced placental inflammation. Specifically, MPs treatment significantly reduced the expression of tight junction proteins in placentas, accompanied by inflammatory cell infiltration and increased mRNA levels of pro-inflammatory cytokines and chemokines in placentas. Finally, we found that MPs induced placental apoptosis and endoplasmic reticulum (ER) stress through the GRP78/IRE1α/JNK axis, leading to placental dysfunction and decreased reproductive performance in pregnant mice. We revealed for the first time that the effects of MPs on placental dysfunction in pregnant animals. Blocking the targets of MPs mediated ER stress will provide potential therapeutic ideas for the toxic effects of MPs on maternal pregnancy.

Keywords