Вестник Самарского университета: Аэрокосмическая техника, технологии и машиностроение (Jul 2017)
Mathematical modeling of a controlled electromechanical actuator for special assembly and coupling equipment
Abstract
The article presents theoretical and experimental bases for the creation of a driving gear with an actuating mechanism based on a planetary roller drive to improve the fidelity of the specified motion law and velocity performance of the support equipment actuators and engineering systems of missile and space-rocket complexes, as well as for integrated tests of heavy missiles. We present a mathematical model of a controlled electromechanical actuator for special assembly and coupling equipment. The results of the tests carried out lead to the conclusion that in order to create a high precision electromechanical drive, it is necessary to use transmission with a smaller gap between the mating elements, high accuracy and reliability of operation. A new design of a planetary roller drive and the advantages of using a stepper motor are described. Thus, mathematical modeling of an electromechanical actuator with a planetary roller drive with a mockup test on an assembly and coupling tilting device makes it possible to create an electromechanical actuator with improved technical and operational characteristics for a tilting device of the space head of a super heavy launch vehicle. This reduces the probability of emergency situations during conducting government and commercial space programs.
Keywords