Scientific Reports (Nov 2017)
Task engagement and mental workload involved in variation and repetition of a motor skill
Abstract
Abstract Explanatory hypotheses proposed in behavioral studies assumed that less repetitive practice schedules, such as random practice, seem to demand greater cognitive effort than more repetitive types of practice organization, such as constant. All of these hypotheses emphasize the enhanced demand to memory processes promoted by less repetitive practice schedules. In the present study, we investigated the cognitive effort involved in random and constant practice schedules with an electrophysiological approach. Twenty-one male participants practiced a sequential key-pressing task with two goals: learning the relative timing dimension and learning the absolute timing dimension. Sixty trials were performed in a constant practice schedule (only one absolute timing goal), and sixty trials were performed in random order (three absolute timing goals). Two electroencephalography based measures of cognitive states were used: (a) task engagement (sensory processing and attention resources) and (b) mental workload (working memory load). The results showed that random practice induced greater cognitive effort than constant practice when task engagement was analyzed. Throughout practice, both task engagement and mental workload decreased more in the constant practice condition than in the random practice condition. The increased demand for sensory processing observed in random practice opens a new exciting field of study in practice organization.