Ecotoxicology and Environmental Safety (Mar 2021)

Nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban soil from Nepal: Source assessment, air-soil exchange, and soil-air partitioning

  • Ishwar Chandra Yadav,
  • Ningombam Linthoingambi Devi

Journal volume & issue
Vol. 211
p. 111951

Abstract

Read online

In contrast to more frequently investigated priority pollutants, such as polycyclic aromatic hydrocarbons (PAHs), only little is known about the fate and distribution of nitrated- and oxygenated-PAHs (NPAHs and OPAHs) in urban soils, particularly in Indian sub-continent. Moreover, experimental data on air-soil exchange and soil-air partitioning are also lacking, which is critical in assessing the partitioning, fugacity coefficient, and secondary emission of PAH-derivatives. Hence, this article provides an insight into the fate, sources, air-soil exchange, and soil-air partitioning of PAH-derivatives on a molecular basis. Prospective health risk due to their exposure has also been discussed. The result showed that PAH-derivatives had significantly polluted all four Nepalese cities. Ʃ15NPAHs and Ʃ2OPAHs in soil were 4 and 20 times lower than their parent-PAHs, and ranged 396–2530 ng/g (median 458 ng/g) and 91.9–199 ng/g (median 94.9 ng/g), respectively. Ʃ15NPAHs was higher than a few global studies, while Ʃ2OPAHs was lower than some of the less urbanized/remote areas worldwide. The 6-Nitobenzo[a]pyrene (6-NBaP) was most abundant in soil, and accounted for 10–12% of Ʃ15NPAHs, while Benzanthrone (BZONE) exceeded among OPAHs, and represented 71–76% of Ʃ2OPAHs, respectively. Source identification study indicated that direct emissions from domestic/residential cooking and heating and secondary formations are the essential sources of derivative chemicals in soil. Fugacity fraction ratio (f ratio) indicated volatilization from the soil. The soil-air partitioning study showed sorption by soil organic matter/black carbon has little role in soil-air partitioning of PAH-derivatives in Nepal's urban soil. The toxicity equivalency quotients (TEQs) of NPAHs (314 ± 102 ng/g) was estimated slightly higher than their parent-PAHs (294 ± 121 ng/g) suggesting a relatively higher risk of soil toxicity in Nepal.

Keywords