Mathematics (Dec 2018)
The Bounds of the Edge Number in Generalized Hypertrees
Abstract
A hypergraph H = ( V , ε ) is a pair consisting of a vertex set V , and a set ε of subsets (the hyperedges of H ) of V . A hypergraph H is r -uniform if all the hyperedges of H have the same cardinality r . Let H be an r -uniform hypergraph, we generalize the concept of trees for r -uniform hypergraphs. We say that an r -uniform hypergraph H is a generalized hypertree ( G H T ) if H is disconnected after removing any hyperedge E , and the number of components of G H T − E is a fixed value k ( 2 ≤ k ≤ r ) . We focus on the case that G H T − E has exactly two components. An edge-minimal G H T is a G H T whose edge set is minimal with respect to inclusion. After considering these definitions, we show that an r -uniform G H T on n vertices has at least 2 n / ( r + 1 ) edges and it has at most n − r + 1 edges if r ≥ 3 and n ≥ 3 , and the lower and upper bounds on the edge number are sharp. We then discuss the case that G H T − E has exactly k ( 2 ≤ k ≤ r − 1 ) components.
Keywords