Viruses (Dec 2016)

Israeli Acute Paralysis Virus Infection Leads to an Enhanced RNA Interference Response and Not Its Suppression in the Bumblebee Bombus terrestris

  • Kaat Cappelle,
  • Guy Smagghe,
  • Maarten Dhaenens,
  • Ivan Meeus

DOI
https://doi.org/10.3390/v8120334
Journal volume & issue
Vol. 8, no. 12
p. 334

Abstract

Read online

RNA interference (RNAi) is the primary antiviral defense system in insects and its importance for pollinator health is indisputable. In this work, we examined the effect of Israeli acute paralysis virus (IAPV) infection on the RNAi process in the bumblebee, Bombus terrestris, and whether the presence of possible functional viral suppressors could alter the potency of the host’s immune response. For this, a two-fold approach was used. Through a functional RNAi assay, we observed an enhancement of the RNAi system after IAPV infection instead of its suppression, despite only minimal upregulation of the genes involved in RNAi. Besides, the presence of the proposed suppressor 1A and the predicted OrfX protein in IAPV could not be confirmed using high definition mass spectrometry. In parallel, when bumblebees were infected with cricket paralysis virus (CrPV), known to encode a suppressor of RNAi, no increase in RNAi efficiency was seen. For both viruses, pre-infection with the one virus lead to a decreased replication of the other virus, indicating a major effect of competition. These results are compelling in the context of Dicistroviridae in multi-virus/multi-host networks as the effect of a viral infection on the RNAi machinery may influence subsequent virus infections.

Keywords