Genes and Diseases (Jul 2021)
Genetic variation in the chemokine receptor 5 gene and course of HIV infection; review on genetics and immunological aspect
Abstract
Chemokines are small protein molecules associated with various physiological events precisely in immune modulation via chemokine receptors. The chemokine receptors are G-protein coupled receptors express mainly on the cell surface of immune cells. Retroviruses, including HIV in the early stage of infection, primarily target chemokines receptors and get internalized easily into immune cells; T cell and escape from immune surveillance. HIV glycoprotein selectively develops an affinity for the extracellular domain of chemokines receptors and allows the pathogen to internalize via CCR-5. Now, CCR-5 remains a crucial signaling pathway that can be translated into the therapeutic target by changing the receptor protein environment. Many populations have a mutation in coding and promoter regions of CCR-5, tuning a resistance for HIV infection. Natively, there are several mechanisms where the human genome remains in the dynamic state by changing its composition and acquiring variations. Single nucleotide polymorphism is spontaneous phenomenon responsible for precise and point mutation at the genome. Several studies have demonstrated that European and African American populations are enriched in significant CCR5 promoter SNP (CCR5Δ32) in the coding and promoter region as well. Now, such SNP can be an early-stage biomarker in studying HIV and other similar infections. Here, in this study, we have elucidated the role of SNP (both the promoter and coding region) and the fate of HIV infections. We also empathized with the genetics of such SNPs, mostly frequency and its immunological impact.