Vestnik MGTU (Apr 2021)

Destructive activity of hydrocarbon-oxidizing micromycetes extracted from the substrates of the coastal areas, the Barents and White Seas

  • Isakova E. A.,
  • Korneykova M. V.

DOI
https://doi.org/10.21443/1560-9278-2021-24-2-178-189
Journal volume & issue
Vol. 24, no. 2
pp. 178 – 189

Abstract

Read online

We analyzed the hydrocarbon-oxidizing activity of 33 micromycetes strains isolated from water and soils of the White Sea and Barents Sea coastal territories. The microscopic fungi studied were represented by the following genera: Acremonium, Aspergillus, Meyerozyma, Oidiodendron, Paradendryphiella, Penicillium, Pseudoqymnoascus, Tolypocladium, Trichoderma, Sarocladium, Talaromyces, Umbelopsis. Hydrocarbon-oxidizing activity of fungi was carried out in a laboratory experiment for two time periods: 14 and 28 days. The residual concentration of oil hydrocarbons in the medium was determined by the infrared spectrometry method. We revealed that micromycetes had different oil-destructive activity. The decrease in oil content for the strains over 14 days ranged from 11 to 83 %. Tolypocladium inflatum st.1, T. inflatum st.2, Penicillium thomii, Meyerozyma guilliermondii, P. simplicissimum, P. camemberti, P. solitum and Trichoderma minutisporum strains had the greatest oil destructive activity, reducing the concentration in the medium by 57–83 %. These micromycetes were isolated from coastal substrates, the content of oil products in which did not exceed the MPC. We found that some individual strains of microscopic fungi had high oil-destructive activity for a longer period of time: Tolypocladium cylindrosporum reduced the content of oil hydrocarbons for 28 days by 95 %. No clear relationship between the fungal biomass and the degree of decomposition of oil products was found, but some tolerant species of micromycetes can actively decompose oil hydrocarbons without significantly increasing their biomass. The identified active strains of hydrocarbon-oxidizing micromycetes can be used to create biopreparations with the prospect of their further use for bioremediation of oil spills in the northern marine ecosystems.

Keywords