Frontiers in Behavioral Neuroscience (Nov 2014)

Real-time fMRI brain-computer interface: Development of a "motivational feedback" subsystem for the regulation of visual cue reactivity

  • Moses O. Sokunbi,
  • David E.J. Linden,
  • Isabelle eHabes,
  • Stephen eJohnston,
  • Niklas eIhssen

DOI
https://doi.org/10.3389/fnbeh.2014.00392
Journal volume & issue
Vol. 8

Abstract

Read online

Here we present a novel neurofeedback subsystem for the presentation of motivationally relevant visual feedback during the self-regulation of functional brain activation. Our motivational neurofeedback approach uses functional magnetic resonance imaging (fMRI) signals elicited by visual cues (pictures) and related to motivational processes such as craving or hunger. The visual feedback subsystem provides simultaneous feedback through these images as their size corresponds to the magnitude of fMRI signal change from a target brain area. During self-regulation of cue-evoked brain responses, decreases and increases in picture size thus provide real motivational consequences in terms of cue approach versus cue avoidance, which increases face validity of the approach in applied settings. Further, the outlined approach comprises of neurofeedback (regulation) and mirror runs that allow to control for non-specific and task-unrelated effects, such as habituation or neural adaptation. The approach was implemented in the Python programming language. Pilot data from 10 volunteers showed that participants were able to successfully down-regulate individually defined target areas, demonstrating feasibility of the approach. The newly developed visual feedback subsystem can be integrated into protocols for imaging-based brain-computer interfaces (BCI) and may facilitate neurofeedback research and applications into healthy and dysfunctional motivational processes, such food craving or addiction.

Keywords