Agronomy (Apr 2022)
Potential Environmental Impacts of Peanut Using Water Footprint Assessment: A Case Study in Georgia
Abstract
The recent decade has witnessed an increase in irrigated acreage in the southeast United States due to the shift in cropping patterns, climatic conditions, and water availability. Peanut, a major legume crop cultivated in Georgia, Southeast United States, has been a staple food in the American household. Regardless of its significant contribution to the global production of peanuts (fourth largest), studies related to local or regional scale water consumption in peanut production and its significant environmental impacts are scarce. Therefore, the present research contributes to the water footprint of peanut crops in eight counties of Georgia and its potential ecological impacts. The impact categories relative to water consumption (water depletion—green and blue water scarcity) and pesticide use (water degradation—potential freshwater ecotoxicity) using crop-specific characterization factors are estimated for the period 2007 to 2017 at the mid-point level. These impacts are transformed into damages to the area of protection in terms of ecosystem quality at the end-point level. This is the first county-wise quantification of the water footprint and its impact assessment using ISO 14046 framework in the southeast United States. The results suggest inter-county differences in water consumption of crops with higher blue water requirements than green and grey water. According to the water footprint analysis of the peanut crop conducted in this study, additional irrigation is recommended in eight Georgia counties. The mid-point level impact assessment owing to water consumption and pesticide application reveals that the potential freshwater ecotoxicity impacts at the planting and growing stages are higher for chemicals with high characterization factors regardless of lower pesticide application rates. Multiple regression analysis indicates blue water, yield, precipitation, maximum surface temperature, and growing degree days are the potential factors influencing freshwater ecotoxicity impacts. Accordingly, a possible impact pathway of freshwater ecotoxicity connecting the inventory flows and the ecosystem quality is defined. This analysis is helpful in the comparative environmental impact assessments for other major crops in Georgia and aids in water resource management decisions. The results from the study could be of great relevance to the southeast United States, as well as other regions with similar climatic zones and land use patterns. The assessment of water use impacts relative to resource availability can assist farmers in determining the timing and layout of crop planting.
Keywords