Balancing Porosity and Mechanical Properties of Titanium Samples to Favor Cellular Growth against Bacteria
Ana Civantos,
Ana M. Beltrán,
Cristina Domínguez-Trujillo,
Maria D. Garvi,
Julián Lebrato,
Jose A. Rodríguez-Ortiz,
Francisco García-Moreno,
Juan V. Cauich-Rodriguez,
Julio J. Guzman,
Yadir Torres
Affiliations
Ana Civantos
Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Ana M. Beltrán
Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
Cristina Domínguez-Trujillo
Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
Maria D. Garvi
Grupo TAR, Escuela Politécnica Superior, Universidad de Sevilla, 41004 Sevilla, Spain
Julián Lebrato
Grupo TAR, Escuela Politécnica Superior, Universidad de Sevilla, 41004 Sevilla, Spain
Jose A. Rodríguez-Ortiz
Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
Francisco García-Moreno
Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Juan V. Cauich-Rodriguez
Unidad de Materiales, Centro de Investigación Científica de Yucatán A. C., 97205 Mérida, Yucatán, Mexico
Julio J. Guzman
Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
Yadir Torres
Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
Two main problems limit the success of titanium implants: bacterial infection, which restricts their osseointegration capacity; and the stiffness mismatch between the implant and the host cortical bone, which promotes bone resorption and risk of fracture. Porosity incorporation may reduce this difference in stiffness but compromise biomechanical behavior. In this work, the relationship between the microstructure (content, size, and shape of pores) and the antibacterial and cellular behavior of samples fabricated by the space-holder technique (50 vol % NH4HCO3 and three ranges of particle sizes) is established. Results are discussed in terms of the best biomechanical properties and biofunctional activity balance (cell biocompatibility and antibacterial behavior). All substrates achieved suitable cell biocompatibility of premioblast and osteoblast in adhesion and proliferation processes. It is worth to highlighting that samples fabricated with the 100−200 μm space-holder present better mechanical behavior—in terms of stiffness, microhardness, and yield strength—which make them a very suitable material to replace cortical bone tissues. Those results exposed the relationship between the surface properties and the race of bacteria and mammalian cells for the surface with the aim to promote cellular growth over bacteria.