Agronomy (Jun 2024)

Prohexadione Calcium and Gibberellin Improve Osmoregulation, Antioxidant Response and Ion Homeostasis to Alleviate NaCl Stress in Rice Seedlings

  • Meiling Liu,
  • Naijie Feng,
  • Dianfeng Zheng,
  • Rongjun Zhang

DOI
https://doi.org/10.3390/agronomy14061318
Journal volume & issue
Vol. 14, no. 6
p. 1318

Abstract

Read online

Prohexadione calcium (EA) and gibberellin (GA) are two different types of plant growth regulators that have different effects on the regulation of plant development. The objective of this study was to evaluate the impacts of EA and GA on rice plant growth, development and morph-physiological traits in two rice varieties: ‘Huang Huazhan’ and ‘Guang Hong 3’. At the three-leaf seedling stage, the plants were treated with 50 mM NaCl 24 h after foliar application of EA (100 mg·L−1) and GA (1 mg·L−1). Data on morphological indexes, osmotic regulators and antioxidant activities were compared with the treatment of EA and GA on the 4th, 7th, 10th and 13th days after NaCl stress. Our data analysis showed that NaCl stress inhibited the leaf area growth of rice seedlings, altered the microstructure and disrupted the antioxidant system, ion uptake and transport balance. The significant increase in malondialdehyde (MDA) content and superoxide anion production rate (O2·¯) indicated that NaCl stress caused a severe oxidative stress response to rice seedlings. Treatment with EA and GA activated the antioxidant system under NaCl stress, significantly elevated superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and suppressed the increase in MDA content and the O2·¯ production rate. Under NaCl stress, EA and GA treatments improved the osmoregulatory balance, significantly increased soluble protein and proline contents and maintained lower Na+/K+ levels. EA and GA treatments significantly increased the K+ and Ca2+ contents, thereby maintaining ionic balance, which was favorable for maintaining the growth of rice seedlings. In this study, moth plant growth regulators maintained the growth and development of rice seedlings under NaCl stress by inducing an increase in osmoregulation and antioxidant levels, reducing the degree of membrane damage and regulating the selective uptake of ions by rice seedlings. Current findings also clarified that foliar application of EA was more effective than GA in three-leaf seedlings by enhancing the morph-physiological and antioxidant parameters under NaCl stress.

Keywords