Beilstein Journal of Organic Chemistry (Jun 2024)

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masami Kuriyama,
  • Osamu Onomura

DOI
https://doi.org/10.3762/bjoc.20.116
Journal volume & issue
Vol. 20, no. 1
pp. 1327 – 1333

Abstract

Read online

The radical hydroarylation of alkenes is an efficient strategy for accessing linear alkylarenes with high regioselectivity. Herein, we report the electroreductive hydroarylation of electron-deficient alkenes and styrene derivatives using (hetero)aryl halides under mild reaction conditions. Notably, the present hydroarylation proceeded with high efficiency under transition-metal-catalyst-free conditions. The key to success is the use of 1,3-dicyanobenzene as a redox mediator and visible-light irradiation, which effectively suppresses the formation of simple reduction, i.e., hydrodehalogenation, products to afford the desired products in good to high yields. Mechanistic investigations proposed that a reductive radical-polar crossover pathway is likely to be involved in this transformation.

Keywords