Advances in Meteorology (Jan 2020)
Effects of Rainfall on PM2.5 and PM10 in the Middle Reaches of the Yangtze River
Abstract
Based on the PM2.5 and PM10 mass concentration data obtained from 51 national air quality monitoring stations and the corresponding rainfall intensity data in automatic meteorological stations in Hubei Province from 1 January 2015 to 31 December 2017, the impact of rainfall intensity on PM mass concentrations under relatively different humidity conditions was analyzed. The results showed that light rain occurred most frequently in the pollution process, with Xiangyang being affected for up to 587 h. PM concentration would not change drastically under the effect of precipitation. Mean rainfall intensity responsible for wet growth of PM10 and PM2.5 was mainly 1.4 mm/h) than that of PM10 (>1.0 mm/h). Precipitation was more likely to produce a wet removal effect for a greater initial value of PM mass concentration, and on the contrary, a wet growth effect was more likely, with the threshold of PM10 mass concentration being 150 μg/m3 and that of PM2.5 mass concentration being 95 μg/m3. Wet removal played a leading role in lower humidity (∼60%) and greater rainfall intensity, but wet growth played a leading role in higher humidity (∼90%) and lower rainfall intensity. As the precipitation level increased (rainfall ≥1.5 mm·h−1), the wet removal to PM10 mass concentration was enhanced more obviously. The variations of PM2.5 had similar distributions to those of PM10 under the effect of precipitation, but the wet removal effect of precipitation was weakened and the wet growth effect was enhanced.