Technologies (Jul 2025)
A Logarithmic Compression Method for Magnitude-Rich Data: The LPPIE Approach
Abstract
This study introduces Logarithmic Positional Partition Interval Encoding (LPPIE), a novel lossless compression methodology employing iterative logarithmic transformations to drastically reduce data size. While conventional dictionary-based algorithms rely on repeated sequences, LPPIE translates numeric data sequences into highly compact logarithmic representations. This achieves significant reduction in data size, especially on large integer datasets. Experimental comparisons with established compression methods—such as ZIP, Brotli, and Zstandard—demonstrate LPPIE’s exceptional effectiveness, attaining compression ratios nearly 13 times superior to established methods. However, these substantial storage savings come with elevated computational overhead due to LPPIE’s complex numerical operations. The method’s robustness across diverse datasets and minimal scalability limitations underscore its potential for specialized archival scenarios where data fidelity is paramount and processing latency is tolerable. Future enhancements, such as GPU-accelerated computations and hybrid entropy encoding integration, are proposed to further optimize performance and broaden LPPIE’s applicability. Overall, LPPIE offers a compelling alternative in lossless data compression, substantially redefining efficiency boundaries in high-volume numeric data storage.
Keywords