Energies (Apr 2025)
Real Implementation and Testing of Short-Term Building Load Forecasting: A Comparison of SVR and NARX
Abstract
In self-consumption (SC) configurations, energy management systems (EMSs) are increasingly being implemented to maximise the self-consumption ratio (SCR). Recent studies have demonstrated that prediction-based EMSs significantly enhance decision-making capabilities compared to non-predictive EMSs. This paper presents the design, implementation, and testing on a real system of two machine learning (ML)-type predictive models capable of forecasting the electricity consumption of an individual building using a small dataset. A nonlinear autoregressive with exogenous input (NARX) neural network model and a support vector regression (SVR) model were designed and compared. These models predict day-ahead hourly electricity consumption using forecasted meteorological data from Meteo Galicia (MG) and building occupancy data, both automatically obtained and pre-processed. In order to compensate for the lack of recurrence of the SVR model, the effect of introducing an additional input, a time vector, was analysed. It is proved that both ML models trained with a small dataset are able to predict the next day’s average hourly power with a mean MAPE below 13.96% and a determination coefficient (R2) greater than 0.78. The model that most accurately predicts the hourly average power of a week is the SVR, which achieves a mean MAPE and R2 of 10.73% and 0.85, respectively.
Keywords