New Multistage Sheet-Bulk Metal Forming Process Using Oscillating Tools
Bernd-Arno Behrens,
Sven Hübner,
Philipp Müller,
Hans-Bernward Besserer,
Gregory Gerstein,
Sergej Koch,
Daniel Rosenbusch
Affiliations
Bernd-Arno Behrens
Institut für Umformtechnik und Umformmaschinen (Forming Technology and Machines), Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen, Germany
Sven Hübner
Institut für Umformtechnik und Umformmaschinen (Forming Technology and Machines), Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen, Germany
Philipp Müller
Institut für Umformtechnik und Umformmaschinen (Forming Technology and Machines), Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen, Germany
Hans-Bernward Besserer
Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen, Germany
Gregory Gerstein
Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen, Germany
Sergej Koch
Institut für Umformtechnik und Umformmaschinen (Forming Technology and Machines), Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen, Germany
Daniel Rosenbusch
Institut für Umformtechnik und Umformmaschinen (Forming Technology and Machines), Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen, Germany
A new sheet-bulk metal forming process for the production of bulk components out of a flat sheet has been developed. Superimposed oscillation has been applied to the new process. By this means, process limits regarding better mould filling were expanded, and forming forces could be reduced. In order to investigate the effects of superimposed oscillation on material behaviour, plane strain and ring compression tests were carried out. The superimposed oscillated plane strain compression test showed a reduction in biaxial flow stress and thus in plastic work. Furthermore, reduced friction and roughness were verified in ring compression tests using superimposed oscillation.