Remote Sensing (May 2023)

Vicarious Radiometric Calibration of the Multispectral Imager Onboard SDGSAT-1 over the Dunhuang Calibration Site, China

  • Zhenzhen Cui,
  • Chao Ma,
  • Hao Zhang,
  • Yonghong Hu,
  • Lin Yan,
  • Changyong Dou,
  • Xiao-Ming Li

DOI
https://doi.org/10.3390/rs15102578
Journal volume & issue
Vol. 15, no. 10
p. 2578

Abstract

Read online

The multispectral imager (MII), onboard the Sustainable Development Science Satellite 1 (SDGSAT-1), performs detailed terrestrial change detection and coastal monitoring. SDGSAT-1 was launched at 2:19 UTC on 5 November 2021, as the world’s first Earth science satellite to serve the United Nations 2030 Sustainable Development Agenda. A vicarious radiometric calibration experiment was conducted at the Dunhuang calibration site (Gobi Desert, China) on 14 December 2021. In-situ measurements of ground reflectance, aerosol optical depth (AOD), total columnar water vapor, radiosonde data, and diffuse-to-global irradiance (DG) ratio were performed to predict the top-of-atmosphere radiance by the reflectance-, irradiance-, and improved irradiance-based methods using the moderate resolution atmospheric transmission model. The MII calibration coefficients were calculated by dividing the top-of-atmosphere radiance by the average digital number value of the image. The radiometric calibration coefficients calculated by the three calibration methods were reliable (average relative differences: 2.20% (reflectance-based vs. irradiance-based method) and 1.43% (reflectance-based vs. improved irradiance-based method)). The total calibration uncertainties of the reflectance-, irradiance-, and improved irradiance-based methods were 2.77–5.23%, 3.62–5.79%, and 3.50–5.23%, respectively. The extra DG ratio measurements in the latter two methods did not improve the calibration accuracy for AODs ≤ 0.1. The calibrated MII images were verified using Landsat-8 Operational Land Imager (OLI) and Sentinel-2A MultiSpectral Instrument (MSI) images. The retrieved ground reflectances of the MII over different surface types were cross-compared with those of OLI and MSI using the FAST Line-of-sight Atmospheric Analysis of Hypercubes software. The MII retrievals differed by <0.0075 (7.13%) from OLI retrievals and <0.0084 (7.47%) from MSI retrievals for calibration coefficients from the reflectance-based method; <0.0089 (7.57%) from OLI retrievals and <0.0111 (8.65%) from MSI retrievals for the irradiance-based method; and <0.0082 (7.33%) from OLI retrievals and <0.0101 (8.59%) from MSI retrievals for the improved irradiance-based method. Thus, our findings support the application of SDGSAT-1 data.

Keywords