Discrete Mathematics & Theoretical Computer Science (Jan 2011)

Supercharacters, symmetric functions in noncommuting variables (extended abstract)

  • Marcelo Aguiar,
  • Carlos André,
  • Carolina Benedetti,
  • Nantel Bergeron,
  • Zhi Chen,
  • Persi Diaconis,
  • Anders Hendrickson,
  • Samuel Hsiao,
  • I. Martin Isaacs,
  • Andrea Jedwab,
  • Kenneth Johnson,
  • Gizem Karaali,
  • Aaron Lauve,
  • Tung Le,
  • Stephen Lewis,
  • Huilan Li,
  • Kay Magaard,
  • Eric Marberg,
  • Jean-Christophe Novelli,
  • Amy Pang,
  • Franco Saliola,
  • Lenny Tevlin,
  • Jean-Yves Thibon,
  • Nathaniel Thiem,
  • Vidya Venkateswaran,
  • C. Ryan Vinroot,
  • Ning Yan,
  • Mike Zabrocki

DOI
https://doi.org/10.46298/dmtcs.2967
Journal volume & issue
Vol. DMTCS Proceedings vol. AO,..., no. Proceedings

Abstract

Read online

We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras.

Keywords