Journal of Applied Informatics and Computing (Mar 2025)

Comparison of Support Vector Machine (SVM) and Random Forest (RF) Algorithm Performance with Random Undersampling Technique to Predict Gestational Diabetes Mellitus Risk

  • Annisa Damayanti,
  • Anna Baita

DOI
https://doi.org/10.30871/jaic.v9i2.9009
Journal volume & issue
Vol. 9, no. 2
pp. 328 – 337

Abstract

Read online

Gestational Diabetes Mellitus (GDM) is a condition of glucose intolerance that develops during pregnancy until the birth process, which is characterized by an abnormal increase in blood sugar levels. Accurate early diagnosis is very important to provide information that can accelerate the treatment process and reduce complications in the mother and baby. One of the machine learning methods that can be used to predict GDM is the Support Vector Machine (SVM) algorithm and the Random Forest (RF) algorithm. This study aims to compare, and evaluate GDM disease prediction models using the SVM and RF algorithms by balancing the target data using the Random Undersampling Technique. The approach using the random undersampling technique managed to increase accuracy by 18% from the accuracy before using the random undersampling technique. The SVM model in this study also uses hyperparameter tuning with kernel parameters, C (cost), and gamma, while the RF model uses Scoring Metrix and four other parameters, namely N_estimators, max_depth, min_samples_split, and min_samples_leaf. The best parameter search process is carried out using GridSearchCV on both models. The results of the study showed that the SVM classification model with random undersampling technique and hyperparameter tuning with K-Fold achieved an average accuracy of 100% with precision, recall, f1-score values also reaching 100%, with the Best Parameter Kernel Linear, C value = 0.1 and gamma value = 0.001 reaching the highest accuracy of 1.0, with a ROC-AUC value of 99% indicating very good prediction performance. While the RF model showed an accuracy result of 99%, tuning was also carried out using the appropriate parameters resulting in the same accuracy of 99%, with a ROC-AUC value of 99% as well. From both models, it shows that the SVM and RF algorithms have very good prediction performance in predicting DMG, but the SVM algorithm can predict DMG better than RF because the number of prediction errors is lower.

Keywords