Remote Sensing (Dec 2022)

A Hypered Deep-Learning-Based Model of Hyperspectral Images Generation and Classification for Imbalanced Data

  • Hasan A. H. Naji,
  • Tianfeng Li,
  • Qingji Xue,
  • Xindong Duan

DOI
https://doi.org/10.3390/rs14246406
Journal volume & issue
Vol. 14, no. 24
p. 6406

Abstract

Read online

Recently, hyperspectral image (HSI) classification has become a hot topic in the geographical images research area. Sufficient samples are required for image classes to properly train classification models. However, a class imbalance problem has emerged in hyperspectral image (HSI) datasets as some classes do not have enough samples for training, and some classes have many samples. Therefore, the performance of classifiers is likely to be biased toward the classes with the largest samples, and this can lead to a decrease in the classification accuracy. Therefore, a new deep-learning-based model is proposed for hyperspectral images generation and classification of imbalanced data. Firstly, the spectral features are extracted by a 1D convolutional neural network, whereas a 2D convolutional neural network extracts the spatial features and the extracted spatial features and spectral features are catenated into a stacked spatial–spectral feature vector. Secondly, an autoencoder model was developed to generate synthetic images for minority classes, and the image samples were balanced. The GAN model is applied to determine the synthetic images from the real ones and then enhancing the classification performance. Finally, the balanced datasets are fed to a 2D CNN model for performing classification and validating the efficiency of the proposed model. Our model and the state-of-the-art classifiers are evaluated by four open-access HSI datasets. The results showed that the proposed approach can generate better quality samples for rebalancing datasets, which in turn noticeably enhances the classification performance compared to the existing classification models.

Keywords