Nanoscale Research Letters (Feb 2019)
Smart Materials for Environmental Remediation Based on Two-Component Gels: Room-Temperature-Phase-Selective Gelation for the Removal of Organic Pollutants Including Nitrobenzene/O-Dichlorobenzene, and Dye Molecules from the Wastewater
Abstract
Abstract Novel two-component gel systems based on aliphatic acid–hydroxy/base interaction were developed as smart materials for environmental remediation. The G1-A16 gelator could be used directly as a powder form to selectively gel aromatic solvents (nitrobenzene and o-dichlorobenzene) from their mixtures with wastewater (containing 0.5 M sodium nitrate and 0.5 M sodium sulfate) via a simple shaking strategy at room temperature without employing co-solvents and a heating–cooling process. Meanwhile, the two-component gel system can efficiently remove the toxic dyes from the aqueous solution. The dominant factors that drive gelation in the case of the gelator and nitrobenzene or water have been studied using FT-IR, 1H NMR, and XRD. Overall, our research provides an efficient two-component approach for facilely tuning the properties of one-component gel for the realization of high-performance functionalities of gels. At the same time, our study demonstrates potential industrial application prospect in removing pollutants efficiently (such as aromatic solvents and toxic dye removal).
Keywords