Microfluidic technology has affirmed itself as a powerful tool in medical and biological research by offering the possibility of managing biological samples in tiny channels and chambers. Among the different applications, the use of microfluidics for cell cultures has attracted much interest from scientists worldwide. Traditional cell culture methods need high quantities of samples and reagents that are strongly reduced in miniaturized systems. In addition, the microenvironment is better controlled by scaling down. In this paper, we provide an overview of the aspects related to the design of a novel microfluidic culture chamber, the fabrication approach based on polydimethylsiloxane (PDMS) soft-lithography, and the most critical issues in shrinking the size of the system.