AgriEngineering (Aug 2024)

Geospatial Approach to Determine Nitrate Values in Banana Plantations

  • Angélica Zamora-Espinoza,
  • Juan Chin,
  • Adolfo Quesada-Román,
  • Veda Obando

DOI
https://doi.org/10.3390/agriengineering6030147
Journal volume & issue
Vol. 6, no. 3
pp. 2513 – 2525

Abstract

Read online

Banana (Musa sp.) is one of the world’s most planted and consumed crops. Analysis of plantations using a geospatial perspective is growing in Costa Rica, and it can be used to optimize environmental analysis. The aim of this study was to propose a methodology to identify areas prone to water accumulation to quantify nitrate concentrations using geospatial modeling techniques in a 40 ha section of a banana plantation located in Siquirres, Limón, Costa Rica. A total of five geomorphometric variables (Slope, Slope Length factor (LS factor), Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI), and Flow Accumulation) were selected in the geospatial model. A 9 cm resolution digital elevation model (DEM) derived from unmanned aerial vehicles (UAVs) was employed to calculate geomorphometric variables. ArcGIS 10.6 and SAGA GIS 7.8.2 software were used in the data integration and analysis. The results showed that Slope and Topographic Wetness Index (TWI) are the geomorphometric parameters that better explained the areas prone to water accumulation and indicated which drainage channels are proper areas to sample nitrate values. The average nitrate concentration in high-probability areas was 8.73 ± 1.53 mg/L, while in low-probability areas, it was 11.28 ± 2.49 mg/L. Despite these differences, statistical analysis revealed no significant difference in nitrate concentrations between high- and low-probability areas. The method proposed here allows us to obtain reliable results in banana fields worldwide.

Keywords