Cerebrospinal fluid efflux through dynamic paracellular pores on venules as a missing piece of the brain drainage system
Yaqiong Dong,
Ting Xu,
Lan Yuan,
Yahan Wang,
Siwang Yu,
Zhi Wang,
Shizhu Chen,
Chunhua Chen,
Weijiang He,
Tessandra Stewart,
Weiguang Zhang,
Xiaoda Yang
Affiliations
Yaqiong Dong
Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine Qingdao University Qingdao China
Ting Xu
The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences Peking University Health Science Center Beijing China
Lan Yuan
The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences Peking University Health Science Center Beijing China
Yahan Wang
The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences Peking University Health Science Center Beijing China
Siwang Yu
The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences Peking University Health Science Center Beijing China
Zhi Wang
The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences Peking University Health Science Center Beijing China
Shizhu Chen
The National Institutes of Pharmaceutical R&D Co., Ltd. China Resources Pharmaceutical Group Limited Beijing China
Chunhua Chen
Department of Anatomy and Histology Peking University Health Science Center Beijing China
Weijiang He
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering Nanjing University Nanjing China
Tessandra Stewart
Department of Pathology University of Washington School of Medicine Seattle Washington USA
Weiguang Zhang
Department of Anatomy and Histology Peking University Health Science Center Beijing China
Xiaoda Yang
The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences Peking University Health Science Center Beijing China
Abstract The glymphatic system plays a key role in the clearance of waste from the parenchyma, and its dysfunction has been associated with the pathogenesis of Alzheimer's disease (AD). However, questions remain regarding its complete mechanisms. Here, we report that efflux of cerebrospinal fluid (CSF)/interstitial fluid (ISF) solutes occurs through a triphasic process that cannot be explained by the current model, but rather hints at the possibility of other, previously undiscovered routes from paravenous spaces to the blood. Using real‐time, in vivo observation of efflux, a novel drainage pathway was discovered, in which CSF molecules enter the bloodstream directly through dynamically assembled, trumpet‐shaped pores (basolateral ϕ<8 μm; apical ϕ < 2 μm) on the walls of brain venules. As Zn2+ could facilitate the brain clearance of macromolecular ISF solutes, Zn2+‐induced reconstruction of the tight junctions (TJs) in vascular endothelial cells may participate in pore formation. Thus, an updated model for glymphatic clearance of brain metabolites and potential regulation is postulated. In addition, deficient clearance of Aβ through these asymmetric venule pores was observed in AD model mice, supporting the notion that impaired brain drainage function contributes to Aβ accumulation and pathogenic dilation of the perivascular space in AD.