Horticulturae (Nov 2021)

Spectral Blocking of Solar Radiation in High Tunnels by Poly Covers: Its Impact on Nutritional Quality Regarding Essential Nutrients and Health-Promoting Phytochemicals in Lettuce and Tomato

  • Myungjin Lee,
  • Cary Rivard,
  • Weiqun Wang,
  • Eleni Pliakoni,
  • Kelly Gude,
  • Channa B. Rajashekar

DOI
https://doi.org/10.3390/horticulturae7120524
Journal volume & issue
Vol. 7, no. 12
p. 524

Abstract

Read online

Spectral characteristics of solar radiation have a major role in plant growth and development and the overall metabolism, including secondary metabolism, which is important for the accumulation of health-promoting phytochemicals in plants. The primary focus of this study was to determine the effect of spectral characteristics of solar radiation on the nutritional quality of lettuce (Lactuca sativa L., cv. red leaf ‘New Red Fire’ and green leaf ‘Two Star’ and tomato (Solanum lycopersicum L., cv. BHN-589) grown in high tunnels in relation to the accumulation of essential nutrients and phytochemicals. Solar spectrum received by crops was modified using photo-selective poly covers. Treatments included commonly used standard poly, luminescence poly (diffuse poly), clear poly, UV blocking poly, exposure of crops grown under the standard poly to full sun 2 weeks prior to harvest (akin to movable tunnel), and 55% shade cloth on the standard poly. All the poly covers and shade cloth reduced the PAR levels in the high tunnels, and the largest reduction was by the shade cloth, which reduced the solar PAR by approximately 48%. Clear poly allowed the maximum UV-A and UV-B radiation, while standard poly allowed only a small fraction of the solar UV-A and UV-B (between 15.8% and 16.2%). Clear poly, which allowed a higher percentage of solar UV-A (60.5%) and UV-B (65%) than other poly covers, increased the total phenolic concentration and the antioxidant capacity in red leaf lettuce. It also increased the accumulation of flavonoids, including quercetin-3-glucoside, luteolin-7-glucoside, and apigenin-3-glucoside in red leaf lettuce, compared to the standard poly. Brief exposure of crops grown in high tunnels to full sun prior to harvest produced the largest increase in the accumulation of quercetin-3-glucoside, and it also resulted in an increase in luteolin-7-glucoside and apigenin-3-glucoside in red leaf lettuce. Thus, clear poly and brief exposure of red leaf lettuce to the full sun, which can increase UV exposure to the plants, produced a positive impact on its nutritional quality. In contrast, shade cloth which allowed the lowest levels of solar PAR, UV-A and UV-B relative to the other poly covers had a negative impact on the accumulation of the phenolic compounds in red leaf lettuce. However, in green leaf lettuce, luminesce poly, clear poly, UV-block poly, and shade treatments increased the accumulation of many essential nutrients, including protein, magnesium, and sulfur in green leaf lettuce compared to the standard poly. Poly cover treatments including shade treatment did not affect the accumulation of either carotenoids (lutein, β-carotene, and lycopene) or essential nutrients in mature tomato fruits. The results show that clear poly cover can enhance the accumulation of many phenolic compounds in red leaf lettuce, as does the brief exposure of the crop to the full sun prior to harvest. Thus, UV radiation plays an important role in the accumulation of phenolic compounds in red leaf lettuce while the overall spectral quality of solar radiation has a significant influence on the accumulation of essential nutrients in green leaf lettuce.

Keywords