Polymers (Jun 2020)
Supermolecular Structure of Poly(Butylene Terephthalate) Fibers Formed with the Addition of Reduced Graphene Oxide
Abstract
Nanocomposite fibers based on poly(butylene terephthalate) (PBT) and reduced graphene oxide (rGO) were prepared using a method able to disperse graphene in one step into a polymer matrix. The studies were performed for fibers containing four different concentrations of rGO at different take-up velocities. The supermolecular structures of the fibers at the crystallographic and lamellar levels were examined by means of calorimetric and X-ray scattering methods (DSC, WAXS, and SAXS). It was found that the fiber structure is mainly influenced by the take-up velocity. Fibers spun at low and medium take-up velocities contained a crystalline α-form, whereas the fibers spun at a high take-up velocity contained a smectic mesophase. During annealing, the smectic phase transformed into its α-form. The degree of transformation depended on the rGO content. Reduced graphene mainly hindered the crystallization of PBT by introducing steric obstacles confining the ordering of the macromolecules of PBT.
Keywords