Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany; Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine
Alisdair R Fernie
Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
Kristin C Gunsalus
Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Center for Genomics and Systems Biology and Department of Biology, New York University, New York, United States
Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007, which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline.