Molecules (Feb 2022)

Transition Metal Substituted Barium Hexaferrite-Modified Electrode: Application as Electrochemical Sensor of Acetaminophen

  • Claudia Patricia Granja-Banguera,
  • Daniel Gerardo Silgado-Cortázar,
  • Jimmy Alexander Morales-Morales

DOI
https://doi.org/10.3390/molecules27051550
Journal volume & issue
Vol. 27, no. 5
p. 1550

Abstract

Read online

This study used substituted barium hexaferrites, which were previously prepared and reported by the authors, to detect acetaminophen by the modification of a conventional glassy carbon electrode (GCE), which led to promising results. The synthesis of this electrode-modifying material was conducted using a citrate sol gel process. A test synthesis using glycerin and propylene glycol revealed that glycerin produced a better result, while less positive anodic potential values were associated with the electrooxidation of N-acetyl-p-aminophenol (NAP). Excellent electroactivity was exhibited by the cobalt-substituted barium-hexaferrite-nanomaterial-modified electrode. A good linear relationship between the concentration and the current response of acetaminophen (paracetamol) was obtained with a detection limit of (0.255 ± 0.005) µM for the Ba1.0Co1.22Fe11.41O18.11 GCE, (0.577 ± 0.007) µM for the Ba1.14Cu0.82Fe11.65O18.02 GCE, and (0.595 ± 0.008) µM for the bare GCE. The levels of NAP in a real sample of urine were quantitatively analyzed using the proposed method, with recovery ranges from 96.6% to 101.0% and 93.9% to 98.4% for the modified electrode with Cobalt-substituted barium hexaferrites (CoFM) and Copper-substituted barium hexaferrites (CuFM), respectively. These results confirm the high electrochemical activity of Ba1.0Co1.22Fe11.41O18.11 nanoparticles and thus their potential for use in the development of sensing devices for substances of pharmaceutical interest, such as acetaminophen (NAP).

Keywords