Agriculture (Nov 2022)

Design and Experiment for Inter-Vehicle Communication Based on Dead-Reckoning and Delay Compensation in a Cooperative Harvester and Transport System

  • Fan Ding,
  • Wenyu Zhang,
  • Xiwen Luo,
  • Zhigang Zhang,
  • Mingchang Wang,
  • Hongkai Li,
  • Mingda Peng,
  • Liwen Hu

DOI
https://doi.org/10.3390/agriculture12122052
Journal volume & issue
Vol. 12, no. 12
p. 2052

Abstract

Read online

To achieve high-frequency and effective inter-vehicle communication between harvesters and transport vehicles during cooperative harvesting, a protocol for wireless communication was designed by analyzing actual communication requirements. Two different wireless communication modes (radio and 4G) were selected for the hardware design; then, a Kalman Filter was designed based on real-time Dead-reckoning and inter-vehicle Communication data after delay Compensation (KFDCC). Finally, the relative longitudinal deviation between two vehicles was obtained and updated steadily at a 10 Hz frequency. By using the relative longitudinal deviation of two vehicles, calculated after aligning the UTC stamp with the local GNSS data from the harvester and transport vehicle as a comparative metric, accuracy evaluation experiments were conducted regarding radio and 4G. The maximum absolute errors of the KFDCC output value were 0.03783 and 0.07381 m, respectively, and the mean square errors were 0.00392 and 0.01317 m, respectively. Compared with systems without the KFDCC method, the mean square errors were reduced by 88.76% and 90.60%, respectively. The KFDCC method can also effectively solve the problems of data delay, packet loss, blockage, error, and so on, in wireless communication, and has short-time breakpoint endurance capabilities. Field experiments showed that the proposed method can provide accurate data support for the dynamic alignment and unloading processes of harvesters and transport vehicles, and it can also provide algorithmic support for real-time communication data fusion between different wireless communication modes. Overall, the inter-vehicle communication mode and data-processing method designed in this paper have good effects and adaptability, and they can guarantee that the whole process of autonomous harvesting operates properly.

Keywords