Foods (Jun 2024)

Investigating the Impact of Pineapple–Whey Protein Fermentation Products on Cefixime-Induced Intestinal Flora Dysbiosis in Mice Using 16S Sequencing and Untargeted Metabolomics Techniques

  • Jiawei Luo,
  • Shan Xiao,
  • Da Ma,
  • Junhan Xiang,
  • Bo Wang,
  • Yanxue Cai,
  • Jihui Wang

DOI
https://doi.org/10.3390/foods13121927
Journal volume & issue
Vol. 13, no. 12
p. 1927

Abstract

Read online

In our previous study, a new fermented food (PWF) created by utilizing pineapple by-products and whey proteins as a matrix via co-fermentation with lactic acid bacteria and yeast was developed, and, in the current study, we examined the impact of a pineapple–whey protein fermentation product on a cefixime-induced dysbiosis model in mice using 16S sequencing and untargeted metabolomics techniques. The results indicated that the pineapple–whey protein fermentation product played a positive role in restoring the intestinal flora. In this study, cefixime reduced the overall abundance of intestinal flora and decreased the relative abundance of probiotics in the gut, while also inhibiting amino acid metabolism. The addition of PWF normalized the intestinal flora to a steady state, significantly increasing the populations of Weissella, Lactococcus, Faecalibaculum, and Bacteroides acidophilus, while decreasing the numbers of Akkermansia and Escherichia-Shigella. Additionally, PWF modulated microbial metabolites, such as L-glutamate and L-threonine, and upregulated amino-acid-related metabolic pathways, including those involving glycine, serine, and threonine. In conclusion, PWF can alleviate intestinal flora dysbiosis and metabolic disturbances induced by antibiotic interventions. It is suggested that PWF could be a potential dietary strategy for patients with antibiotic-associated diarrhea.

Keywords