Neural Regeneration Research (Jan 2015)
Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats
- Xin-juan Li,
- Chao-kun Li,
- Lin-yu Wei,
- Na Lu,
- Guo-hong Wang,
- Hong-gang Zhao,
- Dong-liang Li
Affiliations
- Xin-juan Li
- Chao-kun Li
- Lin-yu Wei
- Na Lu
- Guo-hong Wang
- Hong-gang Zhao
- Dong-liang Li
- DOI
- https://doi.org/10.4103/1673-5374.158353
- Journal volume & issue
-
Vol. 10,
no. 6
pp. 932 – 937
Abstract
The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.
Keywords
- microtubule
- axon
- kinesin-5
- Eg5
- regeneration
- monastrol
- molecular motor protein
- aging
- neurodegenerative disorders
- telomere shortening
- MSCs
- cellular therapy
- traumatic brain injury
- spinal cord injuries
- dual diagnosis
- diagnosis
- complications
- rehabilitation
- post-concussion syndrome
- brain concussion
- blood brain barrier
- phage display
- peptide library
- nanocarrier
- targeting
- Schwann cells
- neurite outgrowth
- neuromuscular junction (NMJ)
- multiple sclerosis
- TGF-β/BMP-7/Smad signaling
- myogenic differentiation
- Trf3
- tumor suppression
- nerve regeneration
- bone marrow mesenchymal stem cells
- cerebral ischemia
- tail vein injection
- middle cerebral artery occlusion
- cell therapy
- neuroprotection
- nerve regeneration
- brain injury
- neuroimaging
- ferumoxytol
- superparamagnetic iron oxide particles
- human adipose-derived stem cells
- middle cerebral artery occlusion
- intracerebral injection
- magnetic resonance imaging
- enhanced susceptibility-weighted angiography image
- modified neurological severity scores
- rats
- Prussian blue staining
- neural regeneration
- neural regeneration
- non-invasive brain stimulation
- transcranial magnetic stimulation
- neurotrophic factor
- brain-derived neurotrophic factor
- neuroplasticity
- hippocampus
- aging
- cognitive function
- nerve regeneration
- curcumin
- neurons
- HIV-1 gp120 V3 loop
- plasticity
- HIV-associated neurocognitive disorders
- output/input curve
- long-term potentiation
- excitatory postsynaptic potential
- paired-pulse facilitation
- Ca 2+
- synaptosome
- NSFC grants
- neural regeneration
- nerve regeneration
- brain injury
- hydrogen sulfide
- cerebral ischemia/reperfusion injury
- P2X 7 receptor
- 2
- 3
- 5-triphenyl-2H-tetrazolium chloride staining
- animal model
- protection
- sodium hydrosulfide
- immunofluorescence
- middle cerebral artery occlusion
- NSFC grant
- neural regeneration