AIP Advances (Jun 2016)
Thermoelectric characterization and fabrication of nanostructured p-type Bi0.5Sb1.5Te3 and n-type Bi2Te3 thin film thermoelectric energy generator with an in-plane planar structure
Abstract
This paper presents in-plane bismuth-telluride-based thermoelectric (TE) energy generators fabricated using metal-shadow and radio-frequency sputtering methods at room temperature. The TE energy generators consist of four couples of 300-nm-thick nanostructured Bi2Te3 (n-BT) and Bi0.5Sb1.5Te3 (p-BST) thin films used as n-type and p-type materials, respectively, on a Si substrate for the p/n junctions of the TE energy generators. Furthermore, the effect of annealing treatment of both n-BT and p-BST thin films on the electrical and TE properties as well as the TE performance of the TE energy generators is discussed. By varying the temperature between the hot and cold junction legs of the n-BT/p-BST in-plane TE energy generators annealed at 200 °C, the maximum output voltage and power are determined to be ∼3.6 mV and ∼1.1 nW, respectively, at a temperature difference of 50 K. The output powers increased by ∼590% compared to that of the as-grown TE generator at a temperature difference of 90 K. This improvement in the TE performance is attributed to the enhancement of the electrical conductivity after heat treatment. From a numerical simulation conducted using a commercial software (COMSOL), we are confident that it plays a crucial role in determining the dimension (i.e., thickness of each leg) and material properties of both n-BT and p-BST materials of the in-plane TE energy generators.