Remote Sensing (Apr 2022)
Analyzing the Error Pattern of InSAR-Based Mining Subsidence Estimation Caused by Neglecting Horizontal Movements
Abstract
It is common to estimate underground mining-induced subsidence from interferometric synthetic aperture radar (InSAR) displacement observations by Neglecting hOrizontal moVements (NOV). Such a strategy would cause large errors in the NOV-estimated subsidence. This issue was proven and the theoretical equation of the resulting errors has been deduced before. However, the systematic analysis of the error pattern (e.g., spatial distribution) and its relationship between some critical influence factors (e.g., lithology of overlying rock strata) is lacking to date. To circumvent this, a method was first presented to assess the errors of the NOV-estimated mining subsidence in this study. Then, the error pattern and the influence factors of the NOV-estimated mining subsidence were discussed. The results suggest that the errors of the NOV-estimated mining subsidence spatially follow a “peak-to-valley” shape, with an absolute “peak-to-valley angle” of 5–15°. In addition, for the same underground mining geometry, the error magnitudes of the NOV-estimated mining subsidence under hard lithology of overlying rock strata are smaller than those under soft lithology, and vice versa. These results would be beneficial to guide the scientific use of the NOV method for understanding the deformation mechanism and controlling the geohazards associated with underground mining and other similar anthropogenic activities.
Keywords