Nature Communications (Dec 2024)
Organizing space through saccades and fixations between primate posterior parietal cortex and hippocampus
Abstract
Abstract The primate posterior parietal cortex (PPC) withholds a unified representation of the visual space supporting visual exploration, while the hippocampus (HPC) provides a memory-based cognitive place map of the environment. To probe the interactions between these two representations, i.e. between view and place, we compared neural activity in the two regions of macaques navigating a virtual maze. We show that a large proportion of PPC neurons displayed spatial selectivity, along with the HPC. We hypothesized that such modulation by self-position might stem from visual cues processing through saccades and fixations. Accordingly, we found saccade-modulated neurons and cells driven by direct fixations on maze paths or landmarks in both brain regions. These populations of “path” and “landmark cells” gave rise to task-relevant maze segmentation, specific to each region. Finally, both regions anticipated landmarks before they appeared in the field of view, suggesting a shared knowledge of the spatial layout. Altogether, these findings highlight the neural processes that make up place, combining visual exploration of objects in space with memory-driven actions.