International Journal of Molecular Sciences (Feb 2024)

Sasanquasaponin from <i>Camellia oleifera</i> Abel Exerts an Anti-Inflammatory Effect in RAW 264.7 Cells via Inhibition of the NF-κB/MAPK Signaling Pathways

  • Yaxin Zhao,
  • Nanshan Zhao,
  • Larwubah Kollie,
  • Dongfeng Yang,
  • Xiaodan Zhang,
  • Haihua Zhang,
  • Zongsuo Liang

DOI
https://doi.org/10.3390/ijms25042149
Journal volume & issue
Vol. 25, no. 4
p. 2149

Abstract

Read online

Sasanquasaponin (SQS), a secondary metabolite that is derived from Camellia seeds, reportedly possesses notable biological properties. However, the anti-inflammatory effects of SQS and its underlying mechanisms remain poorly explored. Herein, we aimed to investigate the anti-inflammatory properties of SQS against lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells, focusing on the nuclear factor-κB (NF-κB) and MAPK signaling pathways. SQS was isolated using a deep eutectic solvent and D101 macroporous adsorption resin and analyzed using high-performance liquid chromatography. The viability of LPS-stimulated RAW264.7 was assessed using the CCK-8 assay. The presence of reactive oxygen species (ROS) was evaluated using 2′,7′-dichlorofluorescein-diacetate. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were detected using reverse transcription–quantitative PCR and ELISA. Western blot was performed to analyze the protein expression of LPS-induced RAW264.7 cells. Herein, SQS exhibited anti-inflammatory activity: 30 μg/mL of SQS significantly reduced ROS generation, inhibited the LPS-induced expression of iNOS and COX-2, and attenuated the production of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. The anti-inflammatory activity was potentially mediated by inhibiting the phosphorylation of IκBα and p65 in the NF-κB signaling pathway and the phosphorylation of ERK and JNK in the MAPK signaling pathway. Accordingly, SQS could inhibit inflammation in LPS-induced RAW264.7 cells by suppressing the NF-κB and MAPK signaling pathways. This study demonstrated the potential application of SQS as an anti-inflammatory agent.

Keywords