Frontiers in Cardiovascular Medicine (Jan 2023)

Assessment of fractional flow reserve in intermediate coronary stenosis using optical coherence tomography-based machine learning

  • Jung-Joon Cha,
  • Ngoc-Luu Nguyen,
  • Cong Tran,
  • Won-Yong Shin,
  • Seul-Gee Lee,
  • Yong-Joon Lee,
  • Seung-Jun Lee,
  • Sung-Jin Hong,
  • Chul-Min Ahn,
  • Chul-Min Ahn,
  • Byeong-Keuk Kim,
  • Byeong-Keuk Kim,
  • Young-Guk Ko,
  • Young-Guk Ko,
  • Donghoon Choi,
  • Donghoon Choi,
  • Myeong-Ki Hong,
  • Myeong-Ki Hong,
  • Yangsoo Jang,
  • Jinyong Ha,
  • Jung-Sun Kim,
  • Jung-Sun Kim

DOI
https://doi.org/10.3389/fcvm.2023.1082214
Journal volume & issue
Vol. 10

Abstract

Read online

ObjectivesThis study aimed to evaluate and compare the diagnostic accuracy of machine learning (ML)- fractional flow reserve (FFR) based on optical coherence tomography (OCT) with wire-based FFR irrespective of the coronary territory.BackgroundML techniques for assessing hemodynamics features including FFR in coronary artery disease have been developed based on various imaging modalities. However, there is no study using OCT-based ML models for all coronary artery territories.MethodsOCT and FFR data were obtained for 356 individual coronary lesions in 130 patients. The training and testing groups were divided in a ratio of 4:1. The ML-FFR was derived for the testing group and compared with the wire-based FFR in terms of the diagnosis of ischemia (FFR ≤ 0.80).ResultsThe mean age of the subjects was 62.6 years. The numbers of the left anterior descending, left circumflex, and right coronary arteries were 130 (36.5%), 110 (30.9%), and 116 (32.6%), respectively. Using seven major features, the ML-FFR showed strong correlation (r = 0.8782, P < 0.001) with the wire-based FFR. The ML-FFR predicted wire-based FFR ≤ 0.80 in the test set with sensitivity of 98.3%, specificity of 61.5%, and overall accuracy of 91.7% (area under the curve: 0.948). External validation showed good correlation (r = 0.7884, P < 0.001) and accuracy of 83.2% (area under the curve: 0.912).ConclusionOCT-based ML-FFR showed good diagnostic performance in predicting FFR irrespective of the coronary territory. Because the study was a small-size study, the results should be warranted the performance in further large-scale research.

Keywords