Nature Communications (Aug 2019)
A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals
- Joris Deelen,
- Johannes Kettunen,
- Krista Fischer,
- Ashley van der Spek,
- Stella Trompet,
- Gabi Kastenmüller,
- Andy Boyd,
- Jonas Zierer,
- Erik B. van den Akker,
- Mika Ala-Korpela,
- Najaf Amin,
- Ayse Demirkan,
- Mohsen Ghanbari,
- Diana van Heemst,
- M. Arfan Ikram,
- Jan Bert van Klinken,
- Simon P. Mooijaart,
- Annette Peters,
- Veikko Salomaa,
- Naveed Sattar,
- Tim D. Spector,
- Henning Tiemeier,
- Aswin Verhoeven,
- Melanie Waldenberger,
- Peter Würtz,
- George Davey Smith,
- Andres Metspalu,
- Markus Perola,
- Cristina Menni,
- Johanna M. Geleijnse,
- Fotios Drenos,
- Marian Beekman,
- J. Wouter Jukema,
- Cornelia M. van Duijn,
- P. Eline Slagboom
Affiliations
- Joris Deelen
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center
- Johannes Kettunen
- National Institute for Health and Welfare
- Krista Fischer
- The Estonian Genome Center, University of Tartu
- Ashley van der Spek
- Department of Epidemiology, Erasmus Medical Center
- Stella Trompet
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center
- Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München
- Andy Boyd
- ALSPAC, Population Health Sciences, Bristol Medical School, University of Bristol
- Jonas Zierer
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München
- Erik B. van den Akker
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center
- Mika Ala-Korpela
- Computational Medicine, Center for Life Course Health Research and Biocenter Oulu, University of Oulu
- Najaf Amin
- Department of Epidemiology, Erasmus Medical Center
- Ayse Demirkan
- Section of Statistical Multi-omics, Department of Clinical and Experimental research, University of Surrey
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus Medical Center
- Diana van Heemst
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center
- M. Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center
- Jan Bert van Klinken
- Department of Human Genetics, Leiden University Medical Center
- Simon P. Mooijaart
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center
- Annette Peters
- German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1
- Veikko Salomaa
- National Institute for Health and Welfare
- Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, Cardiovascular Research Centre, University of Glasgow
- Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital
- Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center
- Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center
- Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München
- Peter Würtz
- Nightingale Health Ltd.
- George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol
- Andres Metspalu
- The Estonian Genome Center, University of Tartu
- Markus Perola
- Institute for Molecular Medicine Finland, University of Helsinki
- Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital
- Johanna M. Geleijnse
- Division of Human Nutrition, Wageningen University
- Fotios Drenos
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol
- Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center
- J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center
- Cornelia M. van Duijn
- Department of Epidemiology, Erasmus Medical Center
- P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center
- DOI
- https://doi.org/10.1038/s41467-019-11311-9
- Journal volume & issue
-
Vol. 10,
no. 1
pp. 1 – 8
Abstract
Biomarkers that predict mortality are of interest for clinical as well as research applications. Here, the authors analyze metabolomics data from 44,168 individuals and identify key metabolites independently associated with all-cause mortality risk.