SHS Web of Conferences (Jan 2023)

Comparing various GARCH-type models in the estimation and forecasts of volatility of S&P 500 returns during Global Finance Crisis of 2008 and COVID-19 financial crisis

  • Chen Xuanyu

DOI
https://doi.org/10.1051/shsconf/202316901077
Journal volume & issue
Vol. 169
p. 01077

Abstract

Read online

In this study, we utilize various GARCH-type models to estimate and forecast volatility on S&P 500 returns and compare the results between the two financial crises, the GFC of 2008 (Global Financial Crisis of 2008) and the COVID-19 financial crisis. These two financial crises are different from the forming reasons by whether mainly caused by the financial factors. This study also makes the evaluations on the performance of these GARCH-type models in estimating and forecasting volatility, which may provide the efficient models for reference for the research of the volatility of the future potential financial crisis. We find that as for the AIC/BIC assessments on the estimation of volatility, the GJR-GARCH model performs better during the GFC of 2008, while the EGARCH model has the better performance during the COVID-19 financial crisis. With respect to the QLIKE loss function evaluation on the forecasting ability of volatility, the GJR-GARCH model performs better during the GFC of 2008, while symmetric GARCH model has better volatility forecasting ability during the COVID-19 financial crisis.

Keywords