Sistemnyj Analiz i Prikladnaâ Informatika (Aug 2021)

Digital image contrast assessment based on the Weibull distribution parameters

  • Y. I. Golub,
  • F. V. Starovoitov

DOI
https://doi.org/10.21122/2309-4923-2021-2-4-13
Journal volume & issue
Vol. 0, no. 2
pp. 4 – 13

Abstract

Read online

The goal of the studies described in the paper is to find a quantitative assessment that maximally correlates with the subjective assessment of the contrast image quality in the absence of reference image. As a result of the literature analysis, 16 functions were selected that are used for no-refernce image quality assessment: BEGH, BISH, BREN, CMO, CURV, FUS, HELM, EBCM, KURT, LAPD, LAPL, LAPM, LOCC, LOEN, SHAR, WAVS. They all use the arithmetical mean of the local contrast quality. As an alternative to averaging local estimates (since the mean is one of two parameters of the normal distribution), it is proposed to use one of two parameters of the Weibull distribution of the same data – scale or shape.For the experiments, digital images with nonlinear contrast distortion from the available CCID2014 database were used. It contains 15 original images with a size of 768x512 pixels and 655 versions with modified contrast. This database of images contains the average visual quality assessment (Mean Opinion Score, briefly MOS) of each image. Spearman’s rank correlation coefficient was used to determine the correspondence between the visual MOS scores and the studied quantitative measures.As a result of the research, a new quality assessment measure of contrast images in the absence of references is presented. To obtain the estimate, local quality values are calculated by the BREN measure, their set is described by the Weibull distribution, and the scale parameter of the distribution serves as the best numerical estimate of the quality of contrast images. This conclusion is confirmed experimentally, and the proposed measure correlates better than other variants with the subjective assessments of experts.

Keywords