Sensors (May 2024)

Direct Measurement of Dissolved Gas Using a Tapered Single-Mode Silica Fiber

  • Panpan Sun,
  • Mengpeng Hu,
  • Licai Zhu,
  • Hui Zhang,
  • Jinguang Lv,
  • Yu Liu,
  • Jingqiu Liang,
  • Qiang Wang

DOI
https://doi.org/10.3390/s24103200
Journal volume & issue
Vol. 24, no. 10
p. 3200

Abstract

Read online

Dissolved gases in the aquatic environment are critical to understanding the population of aquatic organisms and the ocean. Currently, laser absorption techniques based on membrane separation technology have made great strides in dissolved gas detection. However, the prolonged water–gas separation time of permeable membranes remains a key obstacle to the efficiency of dissolved gas analysis. To mitigate these limitations, we demonstrated direct measurement of dissolved gas using the evanescent-wave absorption spectroscopy of a tapered silica micro-fiber. It enhanced the analysis efficiency of dissolved gases without water–gas separation or sample preparation. The feasibility of this sensor for direct measurement of dissolved gases was verified by taking the detection of dissolved ammonia as an example. With a sensing length of 5 mm and a consumption of ~50 µL, this sensor achieves a system response time of ~11 min and a minimum detection limit (MDL) of 0.015%. Possible strategies are discussed for further performance improvement in in-situ applications requiring fast and highly sensitive dissolved gas sensing.

Keywords