Frontiers in Neuroscience (Mar 2015)

The Ecology of Human Fear: Survival Optimization and the Nervous System

  • Dean eMobbs,
  • Cindy C Hagan,
  • Tim eDalgleish,
  • Brian eSilston,
  • Charlotte ePrévost

DOI
https://doi.org/10.3389/fnins.2015.00055
Journal volume & issue
Vol. 9

Abstract

Read online

We propose a Survival Optimization System (SOS) to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i) predicting the sensory landscape, through simulation of possible encounters with threat, selecting appropriate action by pre-encounter avoidance and (ii) prevention strategies in which the organism manufactures safe environments. When a potential threat is encountered the (iii) threat orienting system is engaged to determine whether the organism ignores the stimulus or switches into a process of (iv) assessment, where the organism monitors the stimulus, weighs the threat value, predicts the actions of the threat, searches for safety, and guides behavioral actions crucial to directed escape. When under imminent attack, (v) defensive systems evoke fast reflexive indirect escape behaviors (i.e. fight or flight). This cascade of responses to threat of increasing magnitude are underwritten by an interconnected neural architecture that extends from cortical and hippocampal circuits, to attention, action and threat systems including the amygdala, striatum, and hard-wired defensive systems in the midbrain. The SOS also includes a modulatory feature consisting of cognitive appraisal systems that flexibly guide perception, risk and action. Moreover, personal and vicarious threat encounters fine-tune avoidance behaviors via model-based learning, with higher organisms bridging data to reduce face-to-face encounters with predators. Our theory unifies the divergent field of human affective science, proposing the highly integrated, interconnected nervous systems are optimized to avoid ecological dangers.

Keywords