Boundary Value Problems (Apr 2017)

Periodic solutions of planar Hamiltonian systems with asymmetric nonlinearities

  • Zaihong Wang,
  • Tiantian Ma

DOI
https://doi.org/10.1186/s13661-017-0780-2
Journal volume & issue
Vol. 2017, no. 1
pp. 1 – 16

Abstract

Read online

Abstract In this paper, we look for periodic solutions of planar Hamiltonian systems { x ′ = f ( y ) + p 1 ( t , y ) , y ′ = − g ( x ) + p 2 ( t , x ) . $$\left \{ \textstyle\begin{array}{l} x'=f(y)+p_{1}(t,y),\\ y'=-g(x)+p_{2}(t,x). \end{array}\displaystyle \right . $$ By using the Poincaré-Birkhoff twist theorem, we prove the existence and multiplicity of periodic solutions of the given system when f satisfies an asymmetric condition and the related time map satisfies an oscillating condition.

Keywords