Scientific Reports (Jun 2024)

Enhanced efficiency of bifacial perovskite solar cells using computational study

  • Mohammad Istiaque Hossain,
  • Puvaneswaran Chelvanathan,
  • Amith Khandakar,
  • Kevin Thomas,
  • Ahasanur Rahman,
  • Said Mansour

DOI
https://doi.org/10.1038/s41598-024-62487-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract The most rapidly expanding type of solar cells are the Perovskite Solar Cells (PSCs), because of its high device performance, ease of synthesis, high open-circuit voltage, and affordability. Despite these advantages, the development of perovskite-based solar cells continues to be impeded by the issues with perovskite stability and the utilization of the hazardous heavy element lead (Pb). The study emphasizes on the bifacial structure that maintains the conventional absorber layer and electron transport layer (ETL) in the optimized PSC structure. This study employs SCAPS software for device simulation to comprehensively analyze how various parameters affect the performance of solar cells. Additionally, doping concentration variation in both ETL and HTL are explored. The simulation reveals that changing device structure from monofacial to bifacial significantly influences PSC performance, demonstrating that optimizing individual layers effectively enhances overall solar cell performance. The optimized structure achieves impressive PSC performance metrics through parametric analysis, such as voltage (VOC) of 1.18 V, fill factor (FF) of 82.24%, current density (JSC) of 27.12 mA/cm2, power conversion efficiency (PCE) of 27.90% for an incident solar spectrum from the ETL side, and power conversion efficiency (PCE) of 19.86% for an incident solar spectrum from the HTL side, the calculated bifaciality factor (BF) for this structure is 71.18%.

Keywords