Electronic Journal of Qualitative Theory of Differential Equations (Jul 2011)
Strictly localized bounding functions and Floquet boundary value problems
Abstract
Semilinear multivalued equations are considered, in separable Banach spaces with the Radon-Nikodym property. An effective criterion for the existence of solutions to the associated Floquet boundary value problem is showed. Its proof is obtained combining a continuation principle with a Liapunov-like technique and a Scorza-Dragoni type theorem. A strictly localized transversality condition is assumed. The employed method enables to localize the solution values in a not necessarily invariant set; it allows also to introduce nonlinearities with superlinear growth in the state variable.
Keywords