Frontiers in Chemistry (Sep 2023)

Hierarchical self-assembly of a reflectin-derived peptide

  • Ana Margarida Gonçalves Carvalho Dias,
  • Ana Margarida Gonçalves Carvalho Dias,
  • Inês Pimentel Moreira,
  • Inês Pimentel Moreira,
  • Iana Lychko,
  • Iana Lychko,
  • Cátia Lopes Soares,
  • Cátia Lopes Soares,
  • Arianna Nurrito,
  • Arianna Nurrito,
  • Arménio Jorge Moura Barbosa,
  • Arménio Jorge Moura Barbosa,
  • Viviane Lutz-Bueno,
  • Viviane Lutz-Bueno,
  • Raffaele Mezzenga,
  • Ana Luísa Carvalho,
  • Ana Luísa Carvalho,
  • Ana Sofia Pina,
  • Ana Sofia Pina,
  • Ana Cecília Afonso Roque,
  • Ana Cecília Afonso Roque

DOI
https://doi.org/10.3389/fchem.2023.1267563
Journal volume & issue
Vol. 11

Abstract

Read online

Reflectins are a family of intrinsically disordered proteins involved in cephalopod camouflage, making them an interesting source for bioinspired optical materials. Understanding reflectin assembly into higher-order structures by standard biophysical methods enables the rational design of new materials, but it is difficult due to their low solubility. To address this challenge, we aim to understand the molecular self-assembly mechanism of reflectin’s basic unit—the protopeptide sequence YMDMSGYQ—as a means to understand reflectin’s assembly phenomena. Protopeptide self-assembly was triggered by different environmental cues, yielding supramolecular hydrogels, and characterized by experimental and theoretical methods. Protopeptide films were also prepared to assess optical properties. Our results support the hypothesis for the protopeptide aggregation model at an atomistic level, led by hydrophilic and hydrophobic interactions mediated by tyrosine residues. Protopeptide-derived films were optically active, presenting diffuse reflectance in the visible region of the light spectrum. Hence, these results contribute to a better understanding of the protopeptide structural assembly, crucial for the design of peptide- and reflectin-based functional materials.

Keywords